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A method is developed for obtaining coherent states of a system admitting a

supersymmetry. These states are called supercoherent states. The approach

presented in this talk is based on an extension to supergroups of the usual

group-theoretic approach. The example of the supersymmetric harmonic

oscillator is discussed, thereby illustrating some of the attractive features

o[ the method. Supercoherent states of an electron moving in a constant

magnetic field are also described.

1. Introduction

Over the past three decades, the notion of coherent state [1-6] has enjoyed a

significant role in diverse areas of physics. Several basic definitions are in use [7].

For example, among the possibilities for the simple harmonic oscillator are the

definition as eigenstates of tile annihilation operator, the one as states having and

preserving minimum uncertainty, and the one via the displacement operator. All

these yield the same harmonic-oscillator coherent states, representing a gaussian

wavepacket preserving its shape while executing the classical motion.

This talk describes a generalization of the concept of coherent states to that

of supercoherent states, relevant for systems admitting one or more supersym-

metrics. A supersymmetry involves both bosonic and fermionic states, and the
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corresponding symmetry generators close under a combination of commutation

and anticommutation relations into a superalgebra. The additional structure this

entails means that the physically appropriate generalization of coherent states to

supercoherent states is not immediately apparent.

Our solution to this problem involves a extension to supergroups of a gen-

eralized method [6] for ordinary coherent states that is based on Lie groups and

involves use of the Baker-Campbell-Hausdorff (BCH) relations [8-13] connecting

different group parametrizations. Supergroups can be viewed as extensions of

Lie groups with Grassmann-valued parameters. The theory of supergroups con-

sidered both as abstract groups and as superanalytic supermanifolds has been

developed [14-16], and methods for obtaining BCH relations for supergroups are

known [17-19]. A summary of our methods is provided in section 2.

As an example of the method, the supercoherent states for the supersymmet-

ric harmonic oscillator are considered in section 3. The supersymmetry for this

case is generated by the super Heisenberg-Weyl algebra, containing the identity

and bosonic and fermionic creation and annihilation operators. It is closely re-

lated to supersymmetric quantum mechanics [20-29], which is applicable in several

physical situations. An example with relevance to the quantum Hall effect is the

case of an electron moving in a constant magnetic field [28,29]. This situation is
considered in section 4.

The reader is referred to [30], on which this talk is based, for more information

about our general construction of supercoherent states, about its relation to other

approaches [31-33], and about applications in various physical situations.

2. Method

There is a close connection between group theory and coherent states. To

see this for the simple harmonic oscillator, consider the usual approach via the

displacement operator D, given by D(_) = exp(o_a t --_a). This displaces the

annihilation operator a by a complex constant _: D-l(o_)aD(o_) = a + o_. The

operator D is a unitary element of the harmonic-oscillator symmetry group, called

the Heisenberg-Weyl group, for which the associated algebra is [a,a*] = 1. By

definition, the coherent state parametrized by _ is given by the action of D(c_)

on the ground state 10). The correct normalization of Is) is fixed by the unitarity

of D. The form of Is) can then be explicitly exhibited using the BCH relation

eAeB = e(A+B+ ½[A,B]), valid for any two operators A and B both commuting with

[A,B].

For a general system with an arbitrary Lie group G as symmetry group,

coherent states can be defined as follows [3,6]. Given a unitary irreducible repre-

sentation T(g) of G acting in a Hilbert space H, set I_0) as some given element
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in H. The coherent states are then the set {l@g}} = {T(g)l_0 )}. This definition

is parallel to the displacement-operator approach for the harmonic oscillator.

For systems admitting supersymmetry, we extend this method to supergroups

using the construction of refs. [14-16]. In this approach, supergroups are defined in

analogy with the definition of Lie groups via analytic manifolds, using Grassmann-

valued parameters instead of real or complex ones. The resulting supergroup

coordinates include both commuting and anticolnmuting variables. We refer the

reader to refs. [14-16] for details of the construction. A summary of the essential

points is contained in the paper [30] on which this talk is based.

To find supercoherent states via the group-theoretic method requires the

use of unitary supergroup representations. Introduce the supergroup generators

B j, F_, where the corresponding superalgebra* involves commutators among the

Bj and anticommutators among the F_. Choose a superhermitian basis [31], i.e.,

t = Bj and F t = -F_. Then, a general unitary supergroup element isset B j
T(g) = exp(AjBj + 8_F,,), where Aj is real Grassmann commuting and 8_ is real

Grassmann anticommuting.

Supercoherent states are found by applying T(g) to an extremal state in

the (super) Hilbert space. To find explicit expressions requires the use of BCH

relations for the supcrgroup. A general method for determining these and specific

formulae for some frequently used supergroups may be found in refs. [17-19].

3. The Supersymmetric Harmonic Oscillator

By definition, the hamiltonian H of a supersymmetric quantum-mechanical

system [20-23] commutes with N supersymmetry operators Qj of which it is a

quadratic function: _SjkH = {Qj,Qk}. The superalgebra generated by H and

Qj is called sere(N). Choosing N = 2 gives sam(2), which appears in several

physical contexts [24-29]. Defining Q = (Q1 + iQ2)/_ and Qt = (Q1 - iQ2)/v/2,

the superalgebra sqm(2) is H = {Q, Qt}, [g, Q] = [H, Qt] = 0.

The supersymmetric quantum harmonic oscillator can be defined in terms

of annihilation and creation operators a, at; b, bt generating a supersymmetric

extension of the usual Heisenberg-Weyl algebra: [a, a t] = {b, bt } = I. The corre-

sponding super Hilbert space is spanned by states In, u), where n = 0, 1,2... and

u = 0, 1. States with u = 0 are called bosonic and those with u = 1 are called

fermionic.

The sqrn(2) superalgebra is generated by the oscillator hamiltonian H =

ata + btb and by the supersymmetry operators Q = ab t, Qt = atb. It follows from

* For an overview of superalgebras, see ref. [34]
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HIr,,v) = (r, + ")1_,') that In,0) and In- 1,1) are degenerate states for all n

except n = 0. The ground state 10, 0) is thus unique. Unbroken supersymmetry,

QI0,0) = Qtl0,0 ) = 0, implies that the ground state has energy eigenvalue zero.

The generator Qt takes bosonic states into fermionic ones, while Qt takes fermionic

states into bosonic ones.

Following the method described in section 2, supercoherent states for the

supersymmetric oscillator are given in terms of a unitary representation T(g) of

the super Heisenberg-Weyl group. The supergroup element of relevance may be

taken as T(g) = cxp(--Aa + Aa t + Obt + -Ob) where A is complex Grassmann

commuting and 0 is complex Grassmann anticommuting. The necessary BCH

relation for the super Heisenberg-Weyl group, needed for explicit calculation of

the supercoherent states, is found using Lemma 1 of ref. [17]. The result is

T(g) = exp( _OD - _lAI2)exp(Aat)exp(Obt)exp(--_a)exp(-6b) (3.1)

The supercoherent states IZ) are obtained by applying T(g) to the ground

state 10,0). They are given by

IZ) =(I+_0-0)IA,0 )+OIA,1 } , (3.2)

where for convenience we have defined IA, v} = exp(-lAI 2/2)exp(Aat)lO, v).

The supercoherent states IZ) have the following attractive properties, all

of which are natural generalizations of the correesponding features of ordinary
harmonic-oscillator coherent states.

• They are defined via a natural extension of the usual displacement operator

approach.

• They are eigenstates of the annihilation operators a and b: alZ) = AfZ),

blz) = -olz>.
a in time.• They maintain the minimum-uncertainty value AqAp = 7

• They are unity normalized, (ZIZ) = 1.

• They are not orthogonal and form an (over)complete set. The identity is

resolved by f IZ)(ZId- dOdA= _I.

• They yield the usual harmonic-oscillator coherent states [A} when 0 = 0.

• They contain as the subset A = 0 the usual fermionic coherent states [35] for

a single anticommuting fermionic degree of freedom.

4. A Physical Example

The quantum system consisting of a nonrelativistic electron of mass M and

charge e moving in a constant uniform magnetic field B = BZ" provides a physical
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realization of supersymmetric quantum mechanics [28,29]. The wavefunctions

e-iEt_(r -') for this system obey the two-component Pauli equation, which reduces

1 [<7. (/7- e.4)] 2. The use of cylindrical coordinatesto H_/, = E$ with H - 2M

is natural, as is the choice of cylindrical gauge A, = -_By,i Ay = aBx. For

simplicity, we restrict the analysis to the two-dimensional problem, so that Pz = 0.

The explicit realization of the super Heisenber_-Weyl algebra is as follows.
Define the dimensionless quantities H = MH/eB, E = ME/eB, and introduce

the annihilation operators

i 1
1 i (O,, + + -_eBr) (4.1)a- r ;Or

and

[°0 ,]b= 0

Then, the Pauli equation takes the manifestly supersymmetric form

/-I_ -- (ata + btb)_ = E¢ (4.3)

All the features of the supersymmetric harmonic oscillator discussed in section 3

are reproduced. Note that the fermion annihilation operator b acts to reverse the

electron spin, and therefore the sqm(2) generator Q does also.

Equation (4.3) is equivalent to a confluent hypergeometric equation with two-

component solutions labeled by two quantum numbers, one related to the energy

eigenvalue /_ and one labeling degenerate eigenstates. The explicit solution is

given in our paper [30]. We write ¢ = In,re;u), where the upper and lower

components of _ are labeled by u = 0 and u = 1, respectively. The operators a

and a t act as canonical lowering and raising operators on the quantum number n,

while b and b t act on u. To form a complete set, introduce

ct = _ 1 i (Or + - eBr) (4.4)-;Or ,

acting as a canonical lowering operator on m and satisfying [c, c t] = 1. The full su-

pergroup for this physical system is therefore the product of the super Heisenberg-

Weyl group (generated by a, b, and conjugates) with another Heisenberg-Weyl

group (generated by c and conjugate).

The supercoherent states can now be constructed via the method of section

2. Their explicit form is quickly found from eq. (3.2) by noting that coherent

states with respect to c and c t are the usual harmonic-oscillator coherent states

and that c and c t commute with all other generators. The result is

(4.5)
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Thesesupercoherentstates depend on three Grassmann-valuedvariables, A, C,

and 0. It can be shown that all the attractive features of the oscillator superco-

herent states discussed in section 3 are reproduced.

The expectation values of the hamiltonian H, (ZIHIZ) = -_(AA- 0-0),

and of the magnetic-moment interaction energy U = -eBa,/2M, <zlglz> =

eB (1 + 209) provide insight into the role of the Grassmann-valued variables2M
1

in Eq. (4.5). The difference (ZIH - UIZ} = -_(AA + 5) represents the energy

expectation in the absence of the magnetic moment. It is independent of 00 and

the value of AA is shifted by one half. Since the magnetic moment U distinguishes

between eigenstates with u = 0 and u = 1, it follows that the term with 00 contains

the information about the energy splitting between the two sets of eigenstates.

As we have seen, the supersymmetry present in this physical system ensures

a group-theoretical and natural incorporation of the electron spin. This feature

of supersymmetry is manifest in other physical systems. For instance, one key

aspect of atomic and ionic supersymmetry [25] is the natural appearance of the

Pauli principle.
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